Plants are metabolic champions. The plant kingdom synthesizes thousands of unique and bioactive specialized metabolites that have important roles in plant survival and often valuable applications for humans. Yet, this impressive metabolic machinery is still hardly exploited, mainly because of the limited molecular insight into plant (specialized) metabolism. Accordingly, understanding the biosynthetic networks and biological functions of plant chemicals is a major objective in current plant science. Nature has invented strict, yet not fully understood, regulatory networks that control plant metabolism. These networks safeguard plant fitness in a continuously changing environment. By investigating the reprogramming of plant metabolism by developmental and environmental cues, we aim to advance our fundamental understanding of the mechanisms that steer plant metabolism.
We specifically focus on jasmonate (JA), the phytohormone that steers the delicate balance between growth and defense programs across the plant kingdom, including the production of bioactive specialized metabolites. Understanding when, where and why the JA signal is produced in planta, how it is perceived, how it interacts with other environmental and developmental cues, and how it is transduced to the onset of specialized metabolism will allow to capture the regulatory networks that steer the plant metabolic networks. In parallel, this will enable to unlock plant specialized metabolism for numerous human applications given that our findings serve simultaneously as a novel resource for engineering tools that will facilitate 1) the creation of (plant-based) synthetic biology platforms for the sustainable production of high-value plant metabolites and 2) increased crop productivity by improvement of plant fitness in a changing environment.